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SUMMARY 
A method is presented for treating problems of the propagation 

and ultimate decay of the shocks produced by explosions and by 
bodies in supersonic flight. The theory is restricted to weak 
shocks, but is of quite general application within that limitation. 
In the author's earlier work on this subject (Whitham 1952), only 
problems having directional symmetry were considered ; thus, 
steady supersonic flow past an axisymmetrical body was a typical 
example. The present paper extends the method to problems 
lacking such symmetry. The main step required in the extension 
is described in the introduction and the general theory is completed 
in '$2 ; the remainder of the paper is devoted to applications of the 
theory in specific cases. 

First, in $3 ,  the problem of the outward propagation of 
spherical shocks is reconsidered since it provides the simplest 
illustration of the ideas developed in '$ 2. Then, in '$ 4, the theory 
is applied to a model of an unsymmetrical explosion. In $5, 
a brief outline is given of the theory developed by Rao (1956) for 
the application to a supersonic projectile moving with varying 
speed and direction. Examples of steady supersonic flow past 
unsymmetrical bodies are discussed in $46 and 7 .  The first is 
the flow past a flat plate delta wing at small incidence to the stream, 
with leading edges swept inside the Mach cone ; the results 
agree with those previously found by Lighthill (1949) in his 
work on shocks in cone field problems, and this provides a valuable 
check on the theory. The second application in steady supersonic 
flow is to the problem of a thin wing having a finite curved leading 
edge. It is found that in any given direction the shock from the 
leading edge ultimately decays exactly as for the bow shock on 
a body of revolution ; the equivalent body of revolution for any 
direction is determined in terms of the thickness distribution of 
the wing and varies with the direction chosen. Finally in $8, 
the wave drag on the wing is calculated from the rate of dissipation 
of energy by the shocks. The drag is found to be the mean of the 
drags on the equivalent bodies of revolution for the different 
directions. 

*Now at Institute of Mathenlatical Sciences, New York University. 
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1. INTRODUCTION 
In a previous paper (Whitham 1952), a method was developed for 

determining the symmetrical shocks which are produced, for example, 
by an axisymmetric body in steady supersonic flow or by a spherically 
symmetric explosion. Due to the directional symmetry in these problems, 
the flow quantities depend only on two independent variables. In this 
paper, the method is extended to deal with problems which involve more 
than two independent variables. For shocks produced by bodies in super- 
sonic flight, such problems arise when the body is unsymmetrical or when 
the velocity is not uniform; they also arise in explosion problems when 
the initial shape of charge is not spherical. 

The theory is restricted to weak shocks and for that reason the applications 
to explosion problems will be of.practica1 value only at distances from the 
explosion which are sufficiently large for the shocks to be weak. However, 
in formulating the basic ideas of the theory, it is convenient to start with 
the problem of a weak explosion and, in fact, to consider the following 
simplified model. A region of arbitrary shape, bounded by a surface S, 
contains gas at a pressure higher than that of its surroundings; initially 
the gas is at rest with uniform pressure but at time t = 0 it is.suddenly 
released. According to the theory of sound, the wavefront carrying the 
first disturbance outwards from the explosion moves along the normals 
to the surface S with velocity a,,, where a,, is the constant sound speed in the 
undisturbed gas surrounding the explosion. These normals are the 
orthogonal trajectories of the successive positions of the wavefront and are 
known as ' rays ' ; in a sense, the rays are the carriers of the disturbance. 
Moreover, the appropriate solution to this problem in the theory of sound 
predicts the magnitude of the disturbance, and in particular the variation 
in the magnitude of the pressure jump at the wavefront as it moves out 
along a ray. However, near the head of the wave, the law of variation of 
the amplitude of the disturbance takes a simple form which can be deduced 
quite generally from the approximation of ' geometrical acoustics ', without 
appeal to the detailed solution in the full theory. For, in certain circum- 
stances, the energy propagated down a narrow ray tube formed by a bundle 
of neighbouring rays is conserved ; that is, reflection and diffraction of 
energy may be neglected. Hence, since the flux of energy across any 
section of the ray tube is proportional to the square of the amplitude 
multiplied by the cross-sectional area of the tube, the amplitude varies 
with distance s along the tube like A-1/2(s), where A(s) is proportional to 
the cross-sectional area at the point s. 

But, even when there is no reflection or diffraction of energy, the 
dissipation of energy by the shock wave (which in reality replaces the 
wavefront) and the related distortion of the wave profile behind the shock 
due to non-linear effects cannot be ignored. Thus, even for weak shocks, 
the result that the shock strength varies with s like A-li2(s) requires 
modification, just as in the symmetric problems of the original theory, 
It should be stressed that this inaccuracy is a failure of the linear theory of 
sound and is not introduced by the approximations of geometrical acoustics. 

29 1 
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Now, although its prediction of the shock strength is incorrect, 
geometrical acoustics provides the key to the solution of these more general 
shock problems : we assume for them also that the propagation of the distur- 
bance down each ray tube may be treated separately. This gives a two variable 
problem depending on time t and distance s, and it can be solved by precisely 
those methods which were developed in the original theory. The other 
variables in the problem appear only as parameters in the function A(s) 
and in the function which specifies the initial wave profile for each tube. 

In the improved theory, any point of a shock moves with the speed 
appropriate to the strength of the shock at that point. Thus, even for 
propagation into a uniform medium, if the strength varies along the shock 
there will be a tendency for the shock to be refracted away from the wavefront 
positions given by the linear theory (which assumes the uniform speed of 
propagation ao). As a consequence, the true orthogonal trajectories of the 
shock positions will curve away from the straight rays of the linear theory. 
In principle, therefore, the ray tubes need modification at the same time 
as the modification to the law of propagation in each tube. However, 
unless the strength varies very rapidly along the shock, the effect of the 
curvature of the rays is relatively small. The displacement of the ray 
from its linear position may become large as s -+ ca, but the displacement 
remains small compared to s, and the total angle turned by the ray is small. 
Since we are most interested in the directional distribution of shock strength 
for given s, this error may usually be neglected. 

Nevertheless, situations do arise in which the shock strength varies 
rapidly along the shock. An example of this occurs in the explosion problem 
when the surface S is concave outwards in some region. For, then, the 
rays intersect, and since A+ 0 at points of intersection, the linear theory 
predicts that the strength will become infinite. Of course, the linear theory 
breaks down completely and the consequences are shown in figure 1 ;  
AB is the initial surface, CD, EFG, HIJK are successive positions of the 
wavefront and the dotted line is the ' caustic ', i.e. the envelope of the rays. 
Now, when the properties of a real shock are taken into account, this singular 
behaviour is avoided. In the concave part, due to the convergence of the 
flow, the shock increases in strength and therefore moves faster than -the 
neighbouring parts. This effect smooths out the concavity and the rays 
curve away from each other, avoiding intersections in the neighbourhood 
of F. In such a case 
the distortion of the rays is crucial. By making simplifying assumptions, 
this distortion can be studied to some extent mathematically and a theory 
can be given which covers the main features of figure 2. However, the 
theory forms part of a separate investigation which has more general 
applications ; accordingly, it will be left to a later paper. In most of the 
problems treated here, this question does not arise, and it will be sufficient, 
for the overall picture, to treat only the propagation outside such singular 
regions, bearing in mind the qualitative description of the behaviour as 
represented in figure 2. Thus, the theory will be presented neglecting the 
deviation of the rays from their linear positions. 

The true type of behaviour is sketched in figure 2. 
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So far the basic notions have been described for the explosion problem, 
but the account applies in general to all the problems to be considered, 
provided that in supersonic flow problems the system of reference is so 
chosen that the air is at rest at infinity. In each case the linear theory 
(based on the assumption of small disturbances) represents the shock as 

Figure 1. 

a wavefront spreading out from the body or explosion with its amplitude 
varying as AW2(s), where A($) is proportional to the area of. the appropriate 
ray tube, and in deducing the correct results, the flow in each ray tube may 
be considered separately. Thus, when the general results for propagation 
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in a non-uniform tube have been established, the application to specific 
problems reduces to the determination of the area function A(s) and the 
initial wave profile for each ray tube. In those problems of supersonic 
flow which reduce to steady flow problems when axes fixed with respect 
to the body are chosen, it is more convenient to treat the steady flow problem 
directly rather than to introduce the time as an additional variable. The 
ideas developed above have similar interpretations in steady flow ; these 
will be given and used in 5s 6 and 7 for examples from that field. 

Only propagation through a uniform medium will be considered, but 
it may be noted that this is not an essential restriction. The theory of 
geometrical acoustics will always give the basic geometrical picture of 
wavefronts and rays, but when the sound speed is not constant the rays 
curve round, as the wavefront is refracted. The prediction given by the 
theory of sound for the amplitude of the distrubance may again be deduced 
from energy conservation along a narrow ray tube, but factors involving 
the density p, and sound speed a, in the undisturbed fluid are no longer 
constant and must be retained in the expression for the energy flux. For 
example, the amplitude of the pressure *variation is proportional to 
(Po In principle, the corrected results for the propagation of the 
shocks can be deduced by the methods described below. 

2. GENERAL THEORY 

In this section, a general account is given of the method for improving 
the linear theory of the propagation in individual ray tubes. The method 
is developed from physical arguments; but, as a check, the results for 
the ultimate decay of the disturbance at large distances along the ray tube 
are also deduced mathematically. The required non-linear features may 
be introduced by taking account of the progressive distortion of the wave 
profile due to the small variations in the values of the propagation speeds 
of the individual wavelets in the wave ; each wavelet travels with the local 
speed of sound a relative to the fluid, and this is only approximately equal 
to a,. The dissipation of energy at the shock is then incorporated auto- 
matically at a later stage, simply by applying the Rankine-Hugoniot shock 
conditions. 

The first step is to examine in more detail the results given by the theory 
of sound. For the most part, problems of shocks moving into undisturbed 
fluid are considered, and therefore it is appropriate to find the expressions 
for the flow quantities near the head of the wave. Now when the various 
problems are considered, it is found in general that in each ray tube the 
pressure increment p -p ,  and particle velocity u are proportional to 

where A(s) is the ray tube area and the function F, which determines the 
detailed wave profile, depends on the initial conditions in the particular 
problem considered. Thus, near the head of the wave, the amplitude is 
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correctly predicted by geometrical acoustics ; however, the full solution 
has to be used in order to determine the function F. 

To include the non-linear distortion of the wave profile, ( 1 )  is modified 

(2) to F(7) 
d A ’  

where T(t, s)  is to be determined so that each wavelet specified by T = constant 
travels with the accurate speed a+u in place of a,. Hence, T is to be 
determined from 

= a+u.  (g) z = constant 
(3) 

Since the disturbance is assumed to be small, a-uo is proportional to 
p - p , ;  therefore, a + u  differs from a, by a multiple of F(T)/A.  Then, 
to the same order of approximation, (3) may be written 

where k is a constant. The arbitrary function of T which arises in the 
integration is fixed so that T takes the linear value t -s /ao near s = 0, in 
order that the wave profile agrees with ( 1 )  initially. Then, (4) gives 

and the increasing divergence between the values of T and t-s/ao as s 
increases gives the progressive distortion of the wave profile. 

In all the cases considered, it is found that u = (p-po)/poao, where 
po is the density of the undisturbed gas (the necessity for this result is seen 
below in equation ( l o ) ) ,  and for a polytropic equation of state ( p  CC p‘) 

- a-ao =- -  Y - l P - P o  
a0 2Y Po a 

Hence, if F(T) is chosen so that 

then 
u 1 F(T) a - a ,  - y - 1  F(T) _ -  - - -  - - - -  
a0 Y d A ’  do 2Y dA’ 

and, in (4), 

The improved solution to the problem is now given by (7) and (8), with 
T given implicitly as a function of t  and s by (5). In the problems considered 
here, the wave is headed by a shock ; therefore, to complete the solution, 
the position and strength of this shock must be determined in accordance 
with the Rankine-Hugoniot conditions. For a shock moving into un- 
disturbed gas, it may be shown that, to a first order of approximation, 
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where U is the shock velocity and the subscript 1 denotes values behind 
the shock. The first two of these equations are satisfied already in the 
solution (7) and (8) (even in the linear theory these conditions are satisfied 
by discontinuities in the flow quantities), and the third condition determines 
the shock. It may also be noted that the shock conditions show that the 
entropy jump at the shock is third order in the shock strength, which 
explains why the entropy changes can be neglected in the flow behind the 
shock ; this point is discussed in detail in Whitham (1952). 

Now, the shock is intimately connected with the distortion of the wave 
profile. Wavelets are continually fed into the shock, where their energy is 
dissipated. Without the shock, the wave profile would ' break ', exactly 
as in the well-known theory of plane waves of finite amplitude, due to the 
higher propagation speed of the wavelets in the regions of higher pressure. 
Thus, the compression regions of the initial wave profile shown in figure 3(i) 
would eventually break, as shown by the full line curve in figure 3(ii). This 

(i)  (ii) 
Figure 3. 

leads to a solution which is physically unreal since it predicts more than 
one value of the pressure at certain points. However, shocks cut out the 
overlapping wavelets as shown by the dotted lines in figure 3(ii) ; for example, 
at the head of the wave the pressure jumps almost discontinuously from Ato B. 

It is clear that the position and strength of the shock are determined if 
the value of T corresponding to the flow just behind the shock is known ; 
that is, if the value of T at the point B on the wave profile is known. For, 
denoting this value of T by T(s), the time t at which the shock reaches the 
position s is found by substituting T = T(s) in (5), qnd the pressure, particle 
velocity etc., are found by making this substitution in(7)and (8). However, 
these results must conform with the shock conditions (lo), and this deter- 
mines the function T(s). It follows from ( 5 )  that 

and, according to (lo), (again retaining only the first order term), this must 
be equal to 
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Hence, 
ds dT 1 kF(T)  dT 

k F ( T ) ( / ; - )  4 A  d s + 2 1 / A  - ds a 

- -  

After multiplication by 2 F( T ) ,  this equation integrates to 

2jT F(T') dT' 
(11) 

0 - 
- k P ( T )  ' 

assuming for definiteness that T = 0 at s = 0. 
It is found in general that the positive phase of the wave ( p - p ,  > 0) 

in the region immediately behind the shock, is followed by a negative phase 
( p - p o  < 0).  When this is the case, F(T) has a zero for some finite value 
To of T and the results for the ultimate decay of the shock take a simple form. 

For, assuming that k1l2 ds-t co as s- co, (1 1) shows that T(s)+ To as 

s+ co; and, in fact, (11) may be approximated for large s as 
Ib 

Hence, from (7) and (9), the value of the pressure behind the shock is given 

and ul and (al-ao)/ao are proportional to this. 
the shock at  time t is given by 

From ( S ) ,  the position of 

ds 1!2 

t = a0 -{* Yao lTo 0 F(T') dT'}1'2{f 0- } + To. (14) 

Thus, at s the shock is ahead of the wavelet t = -To + s/ao, on which the 
pressure is zero, by an amount 

The quantity I is a measure of the length of the wave and (15) shows how it 
ultimately increases with s (in contrast to the constant length in the linear 
theory). The pressure distribution within the wave also takes a simple 
form. For, at all points T is near To ; therefore, equation ( 5 )  which deter- 
mines T(t, s) may be approximated as 

Hence, using this value for F(T),  (7) becomes 

Thus, at any point s, the pressure falls linearly with time and the rate of 
fall is 

F.M. U 
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It is of interest to note that (17) depends only on the distance s*and the 
properties of the fluid; it is independent of the initial wave form given 

An essential point must be made in connection with these results. 
The expression (1) was originally introduced as the appropriate approxima- 
tion to the solution given by the theory of sound for the flow quantities near 
the head of the wave. In the improved theory, wavelets are continually 
fed into the shock; hence, values of the flow quantities at points away 
from the head of the wave in the linear theory must also be considered. 
However, the wavelets are fed into the shock at a relatively slow rate and by 
the time this effect has become appreciable the wave has travelled a relatively 
large distance. It is found that (1) again applies for large s even when 
t -s /a ,  is not small (in fact the precise condition for the approximation (1) 
is usually that (a,t - s)/s should be small) ; hence its use is justified throughout 
the motion of the shock, 

The results given by (13) and (15) for the important cases of plane, 
cylindrical and spherical waves may be singled out for special note. For 
plane waves, 

by F ( 4 .  

A = constant, ( p ,  -po)/po cc s--lI2, I oc P, (18) 

A cc s, (p , -p , ) /p ,  K s-3'4, I cc s1'4, (19) 

A cc s2, (9, -po)/po cc +(log s)-1/2, E cc (log s)1/2. (20) 

for cylindrical waves, 

and for spherical waves, 

Using the simplified results (13) and (15), it is possible to see the 
significance of the existence of a zero of F(T).  First, consider the outward 
flux of mass at the point s as the wave passes that point. Clearly, the 
flux due to the positive phase of the wave, in which F(T) > 0, is proportional 
to poulAZ; according to (13) and (15), this quantity varies as .\/A. But 
apart from the case of plane waves for which A is constant, it is generally 
true that 2/A --f to as s --f co. In the latter case, therefore, it is impossible 
for the wave to have only a positive phase, and so it must be followed by 
a negative phase; hence F(T) has a zero. Furthermore, in any realistic 
case, the fluid returns to a state of rest after the whole wave passes to that 
there is a recompression region after the negative phase, and a second 
shock must ultimately be formed (due to the distortion and ' breaking ' 
of the wave profile). Since the positive and negative phases of the wave 
must eventually produce equal and opposite contributions to the mass 
flux, the wave profile will tend to a symmetrical N-wave in which the two 
shocks have equal strengths and the rate of fall of p between the shocks is 
given by (17). The formation and subsequent motion of the second shock 
can be described in detail by the present theory, and the tendency to form 
a symmetrical N-wave is confirmed. A full account of this is given in 
Whitham (1952) for the special cases of steady supersonic flow past an 
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&symmetric body and unsteady plane waves ; the extensions to the more 
general case considered here are trivial. 

At this stage, having described the main structure of the theory, it 
is suitable to reconsider the physical assumptions that have been made, 
and to give mathematical checks where possible. There are two points 
which require further verification. The first concerns the energy dissipation 
by the shock ; this was not introduced explicitly and the question arises of 
whether it is correctly accounted for by making use of the shock conditions. 
Now, i't is easily verified from the results in (13) and (15) that the wave 
loses energy at exactly the same rate as the shocks dissipate energy. The 
full details will not be given, but we may note that the two quantities have 
the same dependence on s. The energy carried by the wave is proportional 
to 

P o a w ( p o )  P - P o  2 .  9 

from (13) and (15), this quantity varies with s like 

and it decreases at a rate proportional to 

The rate of dissipation of energy by the shock is proportional to 

p0a3( P1-Po -) A,  
Po 

the increase of entropy at the shock being proportional to the cube of the 
shock strength. From (13) we see that (22) also varies with s like (21); 
when the constants of proportionality are included, exact agreement is 
found. 

The second point which may be considered further concerns the basic 
step which introduces the non-linear distortion of the wave profile, i.e. the 
introduction of a + u for the signal speed of individual wavelets. Of course, 
this rests on sound physical argument, and indeed is exactly what is found 
mathematically in the well-known theory of simple waves in one-dimensional 
unsteady flow. Nevertheless, further mathematical justification is desirable. 
To provide this the simplified form of the results for large s ((13), (15), (17) 
etc.) will be established by an alternative method, which proceeds directly 
from the non-linear equations of motion. I n  fact this method gives the 
simplest derivation of these results. 

Since the entropy jump at the shock is of third order in the strength, 
entropy changes may be ignored in the flow behind the shock. (This is 
borne out by the above considerations of energy balance.) The equations 

u 2  
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for one-dimensional flow in a tube of cross-sectional area A(s) may therefore 
be taken as 

au au 1 aP 
-3 +% = - as' 

- - 

P P'. 
Introducing the sound speed a, equations for u and a may be written 

au au 2 aa 
as y-i  as %+,--+-a- = O .  

With the N-wave in mind, let us now consider the possibility of the following 
solution in series : 

(27) 

(The constant To is introduced in the measurement of t ,  in order to agree 
with the previous results.) Substituting these expressions in (24) and (25) 
and equating coefficients of ( t  - To - s/aO), it is easily found that 

and 
du, y + l  u; A' _ -  - - _ - -  
ds 2 a: 2Av1' 

Equation (29) may be written 

If only the first order terms are retained in (26) and (27), we have exactly 
the solution found earlier ; for example, 

in agreement with (16) and (17). Moreover, if the head shock is specified 
by 
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so that its velocity is 
dl 

O d s '  
u =  (i0 - - -  ;)-I = a,-a - 

then the shock condition (10) shows (using (31)) that 
dl 1 1 

The solution of this equation is 

in agreement with (15). The shock strength is obtained by substituting 
(32) in (31). 

In this derivation, questions of convergence have been ignored, but it 
is expected that the ratio of successive coefficients in (26) and (27) decrease 
essentially like 1/s and that the series are at least asymptotically valid when 
( t  - To - $/ao) is small compared with s/ao ; uo(t - To - s/ao)/s is less than Z/s, 
and in all the problems considered l /s  tends to zero as s+ 00. 

The above arguments verify the results obtained for large s quite generally. 
Other checks on the theory will be made in specific problems by comparing 
the predictions of the initial shock strengths with those obtained by other 
methods. 

3. SPHERICAL WAVES 

Before considering the unsymmetrical problems which are the main 
subject of this paper, it seems worthwhile, in order to illustrate the general 
theory given in fi 2, to include the simple example of spherical waves. 

First we note that each elementary ray tube is a cone with vertex at 
the centre of symmetry ; therefore, if s is measured from the centre, we may 
choose 

A(s) = s2. (33) 

Secondly, we must consider the linear theory and verify that the results 
quoted in 52 as being typical of all problems, are found in this case. In  
the theory of sound, the flow quantities may be deduced from a velocity 
potential 4 which satisfies the wave equation ; for spherically symmetric 
waves the appropriate solution is 

f ( t  - s b o >  d =  
Now, u = +/as, p -Po = -poa+/at ; hence, 
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In general the wavefront will be given by t - (s- so)/ao = 0, where s = so 
is its position at t = 0 ;  it is convenient, therefore, to introduce 
T = t - (s- s,)/a,. Then, if F(T) is defined by 

f ( T )  = - _" IT F(T')  dT', 
Y o  

the expressions for (p -po)/po and u become 

P-Po = 3) 
Po s )  (34) 

When a,# is small, the second term in (35) may be neglected in coniparison 
with the first, and we see that the results quoted in (7) and (8) are borne 
out by this example. 

The form of the additional term in (35) is of interest in view of earlier 
remarks. For, in any physically realistic case, p returns top, and u returns 
to zero after the wave has passed. But we see that when F returns to zero 
after a positive phase, u still differs from zero by the (smaller) second term 
in (35) ; in order to reduce both p top, and u to zero there must be a further 

negative phase so that This is an alternative argument 

for the existence of a negative phase to the wave. However, it is closely 
connected with the mass flow argument. For, to produce the large outward 
mass flux (proportional to 2/A = s) in the positive part of the wave, there 
must be a continual net forward transfer of mass across the wavelet T = To 
which separates the two phases. This is represented in (34) and (35) by 
the fact that on T = To, wherep = p,, u is zero only to the first approximation, 
and the second term in (35) gives the required flux. 

In any specific problem, F(T) is determined by the boundary or initial 
conditions. These usually take the form of a prescribed value of u on some 
surface s = R(t) (for example, a particle path may be prescribed), and F(T) 

is obtained from (35) by solving the first order linear equation for [ F ( T ' )  dT'. 

It may be noted that in most cases the surface R(t) will not be in the region 
where the second term of (35) can be neglected and therefore the theory of 
geometrical acoustics cannot be used throughout; in fact, if R(t) is small 
the second term is dominant. 

In  the improved theory, there is little to add to the results in 3 2 ; one 
point, however, requires care. Let us assume that the disturbance is 
generated at the surface of the sphere s = R(t). If the initial radius R(0) 
is not zero and R(t) is approximately equal to R(O), equations like (5) and 
(1  1) require only slight modification to take account of the fact that the waves 
start at s = R(0) rather than at s = 0. 

F(T')  & - O .  I, 

0 

For example, (5) becomes 
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But, if R(0) = 0, more care is required since with A = s2, Jds/l/A is not 
convergent at s = 0. However, the lower limit is chosen so that T agrees 
approximately with its linear value for the initial propagation of the wave 
form; hence, we may, with greater accuracy, replace R(0) in (36) by R(T), 
where R(T) is the value of R when the wavelet labelled by T is generated at 
the sphere. Then, using A(s) = s2, T is determined from 

(37 )  

Similarly, the relation for T(s), the value of T at the shock, becomes 

[l' F( T')  dT' 
(38) - - - 24.l S 

logR(T) - k p ( T )  * 

T o  provide a check on the theory, we may consider the shock produced 
by a sphere expanding at a uniform rate, since this special case has been 
solved using a different method by Lighthill (1948). If the radius of the 
sphere at time t is R(t) = ma,t, the boundary condition is 

u = ma, on R = ma,t. 

From (35), this determines F(T) for small values of m to be 
F(T) = 2ym3a,7. 

Thus, since F(T) is continuous at T = 0, there is no pressure jump according 
to linear theory. But, in the improved theory a shock is predicted, as 
required, although its strength is extremely small. 

S 1 1 
Equation (38) gives 

log- = ___ = 
ma, T kZym3u, (y + l)m3 

P i - P o  - F(T) = 2ym2e47+1)-1m-3, 

Therefore, at the shock, 

Po S 

and the shock velocity is given by 

In  these expressions, the factors multiplying the exponential are suspect, 
since the error terms in the exponential may well be more important. The 
most that can be said with certainty is that 

This is the result obtained by Lighthill. 

4. UNSYMMETRICAL EXPLOSIONS 

In this section the theory is applied in detail to the explosion model 
described in Q 1. We consider a high pressure region V of arbitrary shape 
in which the gas is at rest at a pressure p ,  + P, and which is surrounded 
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by an infinite expanse of gas at rest with pressurep, ; at time t = 0, the high 
pressure region is released. Since only weak shocks are considered in this 
theory, it is assumed that P/po is small. Furthermore it will be assumed 
that the region V is convex ; the difficulties which arise when this is not the 
case will be noted later. 

The rays in this case are normals to the surface of V, and the expression 
for A(s) is easily found in terms of the curvature of the surface at the foot 
of the ray. If R, and R, denote the principal radii of curvature at any point 
P of the surface, the radii of curvature of the wavefront at a distance s out 
along the ray from P are R, + s and R, + s. Therefore, by considering the 
area of a small curvilinear rectangle formed by the principal curves on the 
surface, it is seen that the area of any small element of the wavefront is 
proportional to (R,+s)(R,+s).  Thus, we may take 

A(s) = (R, + s)(R, + s). (39) 
We next verify the form of the solution (7) and (8) and determine the 

function F from the full 
the problem the velocity 

linear theory. In -the linearized formulation of 
potential +(x, y, z, t )  satisfies the wave equation, 

and the initial conditions 

where po is the density of the gas. (The first condition arises since the 
velocity o = V+ is zero, and the second from the result that in the theory 
of sound the pressure excess p - p ,  is given by -p,a+/at.) This is a special 
case of a classical problem solved by Poisson and the derivation of the 
solution is given, for example, in Lamb (1932, Art. 287). The solution for 
general initial values of 4 and +/at is 

where Man,[+] and MmOt[a+/8t] represent the mean values of the initial 
values of 4 and a # %  taken over the surface of a sphere with centre at 
(x,y, z) and radius a& Thus, in the present case, 

where g(x,y, z, t )  is the area of the part of the surface of the sphere which 
lies inside V .  

We now consider the variation of 4 with t nt a point a distance s along 
the ray from the point P on the surface of V. In particular, we consider 
the approximate form of the solution near ‘the head of the wave and for large 
values of s. Clearly g remains zero until the radius a,t of the sphere reaches 
S, corresponding to the arrival of the wavefront at  t = ~ 1 %  ; we set 7 = t - s/aoi 
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For small T ,  the sphere will intersect V in a small curve surrounding P.  
If we choose coordinates ( f ,  T , ( )  with origin at P, 5 measured along the 
ray at P and .$ and 7 in the principal directions at P, the equation of the surface 
of V in the neighbourhood of P is approximately 

The equation of the sphere is 

( ( - s ) 2 + t 2 + v 2  = (s+a07)', (42) 
and, assuming that U,T/S is small, its, intersection with (41) satisfies 

To the same approximation, the area of the surface of the sphere bounded 
by this curve is equal to its projection on the plane ( = 0, i.e. it is the area of 
the ellipse (43). Therefore, 

Then, setting t = s/ao in the denominator in (40), we have 

It may be noted that p -po  = -poa+/at jumps discontinuously from 0 to 
$P at s = 0, and this agrees with the well-known one-dimensional result. 

The solution is also required when 7 is not small but s is large. For 
sufficiently large s, it is clear that the part of the sphere intercepted by V 
may be approximated by a plane perpendicular to the ray at P and at a 
distance U,T along the ray inside V. The area of this plane inside V is 
independent of s. Therefore, again taking t = s/ao in (40), we have 

wheref(7) is the cross-sectional area of V at a distance U ~ T  along the inside 
normal from the point P, the section being taken perpendicular to the normal. 
Only the dependence off on T is shown, but it must be remembered that it 
also varies from ray to ray. To  the same order of approximation, we may 
write 

which brings the result into the same form as (45). In fact (45) may be 
included in (47), provided that f(7) - ~ T U ~ T ~ ( R ~ R ~ )  for small T .  But this 
is so; the intersection of 5 = -a07 with (41) is an ellipse with semiaxes 
2/(2a0~R1),  1/(2a,~R,),  and the result follows. Hence, (47) applies both 
for small T and large s, and the appropriate requirement is that aoT/S is small. 
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As noted in (38), A(s)  cc(R,+s)(R2+s); thus, (47) is of the form 
We have predicted by geometrical acoustics. 

where 
F(7) 
2/A ’ (48) 

(49) 

in accordance with (7). Moreover, the particle velocity, a+/&, along the 
ray agrees with (8). Thus, all the results quoted in the general theory 
of $3 1 & 2 are illustrated in this example. The non-linear theory derived 
in $ 2  applies directly to this problem, with the functions A(s) and F(T) 

for each ray given by (38) and (49), respectively. In’the theory, 

is required, and we may note that it is given by 

The shock strength is given as a function of s by (48) with T = T(s) as 
determined by (1 1). 

Since F(T) tends to the finite value &Pipo as T + 0 the initial strength 
of the shock is =&P/po as in the corresponding problem of one-dimensional 
flow ; the compression wave increasing p from p ,  to p ,  + +P travels out 
into the undisturbed medium and an expansion wave reducing the pressure 
from p o +  P to p,+QP travels into the high pressure region. Then, for 
large values of s, the simple law (13) applies, and A is proportional to s2 
so that the variation of shock strength with s is just as for a spherical wave. 
But, the constant of proportionality in (13) varies with the direction of the 
ray. It is seen from (49) that the zero To of F(T) corresponds to the maximum 
cross-sectional area of V perpendicular to the ray considered. The function 
f ( ~ )  increases from zero to a maximum at T = To and then decreases to zero ; 
hence F(T) takes both positive and negative values and again 

From (49), . .  
P j; F ( ~ )  dT = - f( To) ; 

4xa,Po 
hence, (13) gives 

for large s. The shock strength at a fixed distance is proportional to the 
square root of the excess presslire and to the square root of the maximum 
cross-sectional area of V for that direction. Thus the shock is strongest 
in the directions for which the projected area of V is greatest. Even for 
strong explosions, we may expect the predictions of the theory to be 
qualitatively correct, and the directional variation of shock strength to be 
correlated with the projected areas of V. 
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It is perhaps worth noting that for the special case in which V is a sphere 
of radius R,, (47) is the exact solution for all s and T .  

so that 

In  this case 
f(~) = 77(2R0 - a,,T)a,T, 0 < aoT < 2R0, 

D 

Thus, the disturbance is an N-wave from its inception, not only at distances 
sufficiently large for (16) to apply. 

If the boundary of V includes a region which is concave outwards, 
the rays will be distorted as shown in figure 2 ; but, after this region has 
been left behind, the rays will diverge, and ultimately the shock will follow 
the usual s-l(log s ) - ~ / ~  law of decay. Equation (51) will probably still give 
a reasonably accurate form for the constant of proportionality. 

It should be noted that even if the boundary is not concave but is plane 
over some small region distortion of the rays is still required to obtain an 
accurate result. For the ray tube area A(s)  is constant on the rays from 
a plane region, and the propagation along these rays is initially similar to 
the case of plane waves. Hence the shock will not decay with s as rapidly 
as on the neighbouring diverging rays. Now this is the essential point: 
the dependence on s follows a different law so that if unchecked the relative 
difference in shock strength becomes large as s +. co. But, starting first 
at the edge of the plane region, the effect of the large difference in shock 
strength will be to curve the rays outwards, and, eventually, they all diverge 
giving decay of the spherical type. It is interesting to observe that this 
view is confirmed by the expressions found for 4: (45) applies for small T 

and gives the plane wave formula as R, and R, tend to infinity, but (46) 
still holds for large s and gives the spherical form for 4. 

When concave regions of the boundary V are admitted, the function 
f ( ~ )  may have more than one maximum for some directions. If this is so, 
there will be compression regions in which F’(T) :,> 0 in addition to the two 
main compressions, and this leads to the formation of additional shocks. 
These may be determined in the same way as the multiple tail shocks in 
the problem of the supersonic projectile (Whitham 1952), but ultimately 
they run into one of the two main shocks. 

5. SUPERSONIC BANGS 

An important application of the general theory is to the determination 
of the shocks produced by a body in non-uniform supersonic flight. This 
application has been developed in detail by P. Sambasiva Rao (1956 a & b), 
and the main results are quoted here for completeness. 

Near the body, just as in the case of uniform supersonic motion, the 
wavefront forms a cone about the direction of flight with semi-angle equal 
to the Mach angle sin-, l / M ,  where M is the Mach number of the body 
at that point. Hence, the rays from any point of the flight path initially 
make an angle cos-ll/M with the direction of motion. But if the medium 
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is assumed to be uniform, the rays must remain straight. Hence, we have 
the typical pattern showh in figure 4 for an accelerating source. If thk 
velocity were constant,t&8 area of each ray tube would be increaoirrg 
proportional to s, due to bekylindrical spreading of the wavefront away from 

Figure 4. 

the axis. But if the body accelerates, cos-ll/M increases and the rays in 
any meridian plane converge ; conversely, if the body decelerates, the rays 
diverge. It is easily shown that the modification due to this extra 
convergence or divergence is included by taking 

where 
A(s) = s( 1 - i), 

a,(M2 - 1) 
= M 1dMldt’ 

(52) 

( 5 3 )  

M and dM/dt referring to the Mach number of the body when it is at the 
foot of the ray concerned. For acceleration, X > 0, and we see that A 
vanishes when s = X ; at this point the wavefront is cusped. In figure 4, 
the rays shown as full lines ‘ carry ’ the forward part of the wavefront and 
s < X on each of these rays ; the rays shown as broken lines ‘ carry ’ the rear 
part of the wavefront and on each of these s has exceeded A. For a curved 
flight path Rao (1956) shows that A(s) is still given by (52) but h is modified. 
The denominator of X is the component along the ray of the acceleration 
of the body; €or a curved path this includes a term due to the transverse 
acceleration of the body. 

If the acceleration of the body is relatively small (the change of velocity 
in flying a body length is small, say) we might expect the initial wave profile 
to be the same as in the case of uniform motion ; Rao’s detailed investigations 
confirm this. Therefore, the F-function is the same as in Whitham (1952). 
Introducing a constant of proportioriality in order that F conforms to the 
definition (7), it is found that 
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where S(6) is the cross-sectional area of the body at a distance &from the 
nose, and as usual, T measures the time after the wavefront passed the point. 

With A(s) given by (52) and F(T) by (54), the general results of $2 may 
be used. For s < A, A(s) N s and the shock spreads away from the axis 
like a cylindrical shock. If the velocity of the body is uniform, h is infinite 
and this behaviour extends right to infinity with the ultimate decay in shock 
strength like r 3 1 4 .  But if h is finite, we see that for sufficiently large s, 
A c f s 2  so that the decay is eventually like a spherical shock with strength 
proportional to r1 (log s)-l12. It should be remembered, however, that 
when h > 0, a cusp will have intervened before this region is reached, and 
in the neighbourhood of the cusp the simple theory of geometrical acoustics 
breaks down. Hence, we are assuming that beyond the cusp the theory 
may again be applied, at least so far as the main features are concerned. 
The question of what happens near a cusp and what effects it has on the 
results is discussed in more detail in Rao (1956 a & b). 

Here, only the highlights of the theory of supersonic bangs have been 
mentioned in order to show the generality of the theory developed in $ 2 ;  
for the details and practical predictions, reference should be made to Rao’s 
papers. 

6. STEADY SUPERSONIC PLOW: AN EXAMPLE IN CONE THEORY 

The theory developed in the first part of the paper can be interpreted 
and applied in certain problems of steady supersonic flow past unsymmetrical 
bodies. If we introduce cylindrical polar co-ordinates ( r ,  0, x) and let U 
be the velocity of the undisturbed stream, then the steady flow problem is 
analogous to an unsteady flow in the (r, 0) plane with x /U playing the role 
of time. Thus, for a pointed body, the analogy in unsteady flow would be 
to the disturbance produced by a solid cylinder which starts with radius 
zero and expands with arbitrary shape. If the body is swept behind the 
Mach cone through the nose, the corresponding rate of expansion of the 
cylinder is subsonic. In that case, the rays would be straight lines through 
the origin r = 0, and the linear theory would predict amplitudes proportional 
to Y2. Hence, for the steady problem, the analogue to treating the propaga- 
tion in each ray tube separately is to consider the flow in each meridian 
plane 8 = constant separately. Near the Mach cone, which is the analogue 
of the wavefront, the amplitude of the disturbance will be proportional to 
+ I 2 .  Thus any dependence on 0 must be introduced by the profile function F. 

If we consider a body which is everywhere slender (i.e. its slope in the 
stream direction is always small) and whose cross-section has no regions 
of abnormally large curvature, the linear theory developed by Ward (1949) 
shows that, although the flow near the body varies with 0, the F-function 
giving the flow near the Mach cone is independent of 0. Hence, the shock 
is the same as for a body of revolution with the same distribution oE cross- 
sectional area. I n  order to obtain an example involving an unsymmetrical 
shock, we must relax these conditions on the body shape. 
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We cohsider the flow past a flat plate delta wing at incidence, the edges 
of the wing being swept back well behind the Mach cone. This is a problem 
in which there is no fundamental length and hence the velocity components 
must be equal to the main stream velocity U multiplied by functions of 
r / x  and 6 ; the velocity potential has an additional factor x since it has an 
extra dimension of length. This is a so-called cone field problem, and the 
linearized solution is known. Furthermore, Lighthill (1949) has shown 
how the shock strengths may also be found in such cone field problems. 
Here, the results are derived by the general theory which does not rely on 
the special properties of cone fields ; the agreement with Lighthill's result 
gives independent confirmation of the assumptions of the theory. 

A full account of the linear theory is given by Goldstein and Ward 
(1950). The velocity potential is taken as U(x + 4) where 4 = xf(Br/x, e), 
B = .v'(Mz - l), and it may be shown for the present problem that, near 
the Mach cone x = Br, 

The functiong(8) introduced here is identical with the A(0) used by Lighthill, 
and is given by 

(56) 
L u 4 2  sin 6 

g(') = - B( 1 - to cos e)3y 1 - t, cOs 4312 ' 
where 8 is measured from the plane of the wing, u is the angie of incidence 
of the wing, cot l to/B and cot-lt,/B are the angles made with the x axis 
by the leading edges of the wing, and 

(to - tA2 
2( 1 + to)'/'( 1 - t1)42{2E(k) - (1 - R2)K(k)} ' L =  

where E(k) and K(k) are the complete elliptic integrals. 
From (55 ) ,  we see that 

for the flow near the Mach cone, and it may be noted that, as in previous 
examples, the crucial condition is that T / r  should be small, where the 
characteristic variable T is now x - Br. Moreover, we see that the azimuthal 
component of the perturbation velocity, Uc&,/r, is of order ~ / r  times the other 
components U+,U+,. Thus, to a first approximation, the flow is in meridian 
planes and 6' plays the role of a parameter. This is in accordance with the 
general theory. From (57), we have 

g(O)(x - Br)U2 
4 z  = - (Br)l/Z ' 

B1I2g( 0)(x - Br)'la 
+r = rll2 9 
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or, introducing a standard notation, 

-- 
( ~ B Y ) ~ / ~  ’ 

+,= -- 
( 2 B ~ ) 4 ~  BF(T) ’ J 

F(T) = g(8)2-1@~u2. 
where 

(59) 
The improved non-linear theory is obtained by finding a more accurate 

relation for the characteristic variable T(X,  Y ) ,  in place of T = x- BY. This 
procedure is quite straightforward, and is the same as the corresponding 
step in the axisymmetrical problem (Whitham 1952) since 8 appears only 
as a parameter. The characteristic direction 
at any point makes the local Mach angle p with the stream direction x. 
Hence, T is constant on each curve satisfying 

Briefly, it is as follows. 

dx 
dr - = cot(p+x). 

The sound speed is given in terms of r$ by Bernoulli’s equation; hence 
cot(p + x )  can be expressed in terms of +. Using 4, = - Br$x, it is found 
that T is to be determined by 

Y + l  
= B +  - M4+,, 2B 

to the first order in +. Thereforej from (58), the relation for T is 
x = BY - klF(T)r1I2 + T ,  

where 

When F(T) < 0, the characteristics are diverging in an expansion wave ; 
but when F(T) > 0, they converge and form a shock. In the latter case the 
shock can be determined by giving the value T(r) of T at points just behind 
the shock, and if the Aow ahead of the shock is undisturbed, the condition 
is 

2 [’ F ( T ) d T  

The derivation of this result from (60) is identical with that given in Whitham 
(1952) ; it also follows closely the derivation of ( 1  1) from ( 5 ) .  The equation 
of the shock is then given by substituting T = T(r)  in (6). 

From Bernoulli’s equation,$ - p ,  = - poU2+s wherep,, po are the pressure 
and density in the main stream ; hence, 

The shock strength is found by substituting T = T(Y) in this expression. 
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For the problem of the delta wing, F(T) < 0 above the wing where 
But below the 0 < 0 < m, and there is an expansion wave as expected. 

wing F(T) > 0 and there is a shock. In  this case, (62) gives 

so that 

Hence, the equation of the shock is 
F ( T )  = #k,g2(8)P/2. 

and its strength is 

These expressions agree exactly with Lighthill's results. 

7. THIN WINGS OF FINITE SPAN 

In  the previous example only the profile function F depended on the 
orientation of the plane in which the flow was considered. We now turn 
to a problem in which the amplitude function (which was merely r U a  in 
the last example) also varies with orientation. This is the case in supersonic 
flow past a wing with planform of the general shape shown in figure 5. 

Figure 5 .  
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The linearized theory has been developed in detail (see, for example, the 
account in Ward (1955)) so that all the information required for applying 
the theory of this paper is obtainable. 

First we consider the geometry of the wavefront in order to deduce the 
set of planes in which the flow should be considered and to obtain the 
amplitude of the disturbances near the wavefront. We then turn to the 
linearized solution for the profile function F and, incidentally, for verification 
of the geometrical prediction of the amplitude. 

For simplicity, we consider only the problem in which the flow is 
symmetric relative to the mean plane of the wing ; this is sometimes called 
the ' thickness problem '. It is assumed that the boundary of the wing lies 
in the (x ,y )  plane with the x axis in the direction of the main stream, that 
the upper and lower surfaces of the wing are given by 

and that the boundary of the wing planform is given by 
x = & Z(x,y),  (66) 

x = Z(y). (67) 
The wavefront is the envelope of the Mach cones with vertices on the 

supersonic leading edge AB of the wing, A and B being the points where the 
boundary makes the Mach angle p with the main stream. If (Z(q),q) is 
a point on AB, the Mach cone is 

(X - 1 ( ~ ) ) 2  = B2(y - q)2  + B2z2. 

(x - W ) ~ ' ( r )  = B2(Y - 

(68) 
At points on the envelope the derivative of (68) with respect to q is also 
satisfied, so that 

The latter is the equation of a plane through (Z(q),q) parallel to the z axis 
and making an angle tan-Y'(T)/Ba with the x axis. This plane is shown 
as PNM in figure 6, where P is ( Z ( ~ ) , T )  and PM is the intersection of the 

(69) 

Figure 6. 

plane with the cone (68) ; P L  is the stream direction and PNis  the intersection 
of the plane (69) with z = 0. The wavefront is the surface generated by 
PM as P moves along AB. Now in applying the theory, the flow is con- 
sidered separately in each normal plane PLM. The coordinates 
corresponding to the ray coordinates of the unsteady flow problems are 

F.M. X 
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x , ~  and r, where r] specifies th_e plane PLM and r measures distance from 
P L  in this plane. Since LPN = tan-Y‘(T)/B and M P L  = p = corlB, 
it follows that 8 = MEN is given by 

1’(d COSe= - B ’  

Hence, the Cartesian coordinates (x,y, z) are related to (x, q, r )  by 

(71) I x = x, 

y = 77+rcose, 

z = r sin 8. 
The function corresponding to the area A($) of a ray tube, is now the distance 
between two neighbouring normal planes PLM. If we consider the two 
planes corresponding to r] and r] + 67 and denote this distance by D ( r ) h ,  
the initial value of D is sine; therefore, since the planes diverge with 
angle 60, D(r) is given by 

dt? 
D(r) = sine-r-, 4 

The amplitudes of the disturbances vary like D-1/2 .  

to the fuIl linear theory. 
potential t$ will take the form 

In order to find the solution near the wavefront in detail, we must turn 
But, we can already predict that the velocity 

-f (4 
= 2/[2B(r+(B2--1’2)/B1”)]’ (73) 

where 7, which measures distance behind the wavefront in a streamwise 
direction, is given by 

7 = x-t(q)-Br.  (74) 

(Although only the dependence off on r is shown explicitly it should be 
remembered that f is also a function of 7.) It is convenient to take the 
amplitude as given in (73) rather than as D-l12(r) itself, but it should be 
noted that this assumes Z”(7) # 0 at any point of the leading edge of the wing. 
The situation when Z”(7) = 0 is very similar to the case of zero curvature 
of the surface in the pro6lem of $4. In this case, the normal planes are 
parallel and the shock initially behaves as in the essentially two-dimensional 
problem of a swept back wing of constant section. However, as r increases, 
the normal planes will in reality curve away from each other to give the 
eventual decay typicaI of a finite body. 

For the symmetrical problem, the complete linearized solution is 
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where Z,(x,y) = aZ(x,y)/ax, and the integration is over the part of the wing 
in the region 

this region of integration is the intersection with the plane x = 0 of the 
upstream Mach cone from (x,y,  2). 

The approximate form of (75) is required both for small r and large r. 
These results turn out to be closely similar to the corresponding ones in 
$4, and the details of the check on (73) for small T is omitted. It is found 
that 

x - x’ 2 B2/[(y -y’)2 + x2J ; (76) 

where ~(7) = Z,(E(q), 7) is the slope of surface in the x-direction at the leading 
edge. The approximation of (75) for large r is now obtained, and it gives 
a function f(T) which confirms (77). We set x’ = Z(7) +u, and y’ = 7 +/I, 
in the double integral (75) ; then, since the variations of u and /? are small 
compared to r, we have approximately 

(X - x’)’- B2(y - Y ’ ) ~  - B’Z’ 

= ( B r + ~ + u ) P - ~ 4 ( ~ - / 3 ) ’  -B2re ( l -  g) 
= 2Br(T - u + Z’(7)/3). 

Thus, 

and the region of integration is bounded by the straight line u - Z’/3 = T 
which is parallel to the tangent to the leading edge at P and is at a distance T 
downstream from P (see QR in figure 5). Hence, the integral in (89) is 
independent of r ,  and comparing (78) with (73) it is seen that 

The expression (79) can be written in a form which agrees exactly with 
the corresponding result in flow past a body of revolution. The region 
of integration is divided into elementary sections parallel to QR, then 
u- l’,!? is constant and equal to t, say, on any section. The thickness of an 
elementary section is sint,hdt where t,h is the angle between QR and the 
stream direction ; hence, for this slice, 

where P ( t )  is the cross-sectional area of the slice and S(t)  denotes the 
projection of the area P ( t )  perpendicular to the stream. Thus, (79) 
becomes 

JJ 2Zdud/3 = S*(t)sin a,h dt = S(t) dt 

and 

x 2  
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for large r. This result is exactly the same as the velocity potential at 
distance r from the axis in flow past a body of revolution whose cross-sectional 
area at distance t from the nose is S(t) .  Thus, in each plane normal to the 
wavefront, the wing can be replaced by an equivalent body of revolution 
(as far as the flow at large distances is concerned). Of course, the equivalent 
body of revolution is not the same for each plane. 

The determination of the shock etc. is formally the same as in $ 6  with 
the slight modification that, in view of (73), r must be replaced by r + ro(T) 
where 

where 

The corrected expression to determine T is 

At the shock, T = T(r)  where 
r T  

The initial strength is given by setting T = 0 in (82); hence, since 
F(0) =f'(O) = 2 / 2 ~ ( ~ ) / d Z "  (see (77)), it is 

This is the same as the linear result, of course, and agrees also with the 
result for flow past a wing of uniform section and initial slope E, swept 
back through an angle tan-1 Z'(7). 

For large r ,  the law of decay is found by taking T near to the zero To of 
F(T),  so that ( 8 5 )  gives the approximation 

Then, from (82),  we obtain 
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The shock decays in each normal plane exactly as in the meridian plane for 
a body of revolution having the appropriate F-curve, and the directional 
variation of strength arises only from the dependence of F on r ] .  

8. NOTE ON THE WAVE DRAG OF A FINITE WING 

The wave drag on a body can be calculated from the rate of dissipation 
For a body of revolution the drag is then obtained of energy by the shocks. 

in the form 

(see Whitham 1952), where F(T) is the F-function for the body. 
on the wing can be calculated in a similar way. 

to the leading edge of the wing is 

The drag 

In the first instance, the contribution to the drag from the shock attached 

where po and To are the density and temperature of the main stream, s is 
the entropy jump at the shock, D(r) is the function defined by (72) and 
r ] ,  < r ]  < defines the leading edge of the wing. Now 

and 
do 

D(r) = - [r  + r o ( ~ ) ]  - . 
dr] 

Hence substituting the value 'of ( p ,  -po)/po from (82), the expression (90) 
becomes 

When r is eliminated by means of (85), this gives 

Although the shocks from the trailing edge have not been treated 
r m  

(91) 

here, 

it is reasonable to  assume that they will contribute the terms P ( T ) d T ,  

since this is the contribution of the tail shock in the body of revolution case. 
If this is assumed the drag on the wing becomes 

J To 

poUz{I( I m P ( T )  0 d T )  do. 
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On comparing this result with (89), it is seen that the drag on the wing is 
the mean of the drags on the equivalent bodies of revolution introduced in 
Section 7. Of course, the expression (92) for the drag must be equal to 
the value obtained by the more direct evaluation frpm the pressures on the 
wing surface, but for some purposes this may be a more useful form. It is 
certainly a much more significant form for the present theory. 
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